校園生活
當前位置: 首頁 >> 校園生活 >> 學術活動 >> 學院講座 >> 正文
統計數據 / lectrue notice
  • 排序 學院 發文量
    1 岳麓書院 142
    2 物理與微電子科學學院 142
    3 機械與運載工程學院 138
    4 化學化工學院 135
    5 數學與計量經濟學院 70
    6 土木工程學院 62
    7 材料科學與工程學院 61
    8 信息科學與工程學院 44
    9 建筑學院 40
    10 經濟與貿易學院 38
  • 排序 學院 發文量
    11 電氣與信息工程學院 35
    12 教務處 34
    13 生物學院 29
    14 工商管理學院 28
    15 外國語學院 15
    16 法學院 15
    17 新聞傳播與影視藝術學院 8
    18 研究生院 7
    19 經濟與管理研究中心 6
    20 馬克思主義學院 5
    21 中國語言文學學院 4
機械院:Novel Electromagnetic Scattering Phenomena
學術地點 車身先進設計制造國家重點實驗室(兩山一湖) 一樓會議室 主講人 楊易(麻省理工學院博士)
講座時間 2019年7月2日(星期二) 上午 10:30-

報告題目:Novel Electromagnetic Scattering Phenomena

主 講 人:楊易(麻省理工學院博士)

時 間: 2019年7月2日(星期二) 上午 10:30-

地 點: 車身先進設計制造國家重點實驗室(兩山一湖) 一樓會議室

主講人簡介:Yi Yang is a graduate of Electrical Engineering at Peking University, BSc & MSc. Since 2014, Yi has been a PhD student in the group of Prof. Marin Solja?i? at Massachusetts Institute of Technology (MIT), studying photonics and plasmonics. He will become a postdoctoral associate in the same group starting 2019 fall.

報告摘要:Scattering of electromagnetic waves is fundamentally related to the inhomogeneity of a system. He will describe his recent theoretical and experimental findings of electromagnetic scattering under contemporary context. First, he will discuss a universal upper limit to the spontaneous fr ee electron radiation and energy loss [1]. Such an upper limit allows them to make two predictions. One is a new regime of radiation operation—at subwavelength separations, slower (non-relativistic) electrons can achieve stronger radiation than fast (relativistic) electrons. The other is a divergence of the emission probability in the limit of lossless materials. They further reveal that such divergences can be approached by coupling free electrons to photonic bound states in the continuum.

Second, he will present a general framework for nanoscale electromagnetism [2]. The framework is featured by surface response functions known as Feibelman d-parameters, which allows a straightforward account of surface-related nanoscale, quantum corrections. Experimentally, they introduces the ellipsometry’for the surface response functions, enabled by the observation of large nonclassical spectral shifts and the breakdown of Kreibig broadening.

Finally, he will discuss a synthesis and observation of non-Abelian (non-commutative) guage fields in real space [3]. Via a real-space closed loop configuration, they observe the non-Abelian Aharonov–Bohm effect with classical waves and classical fluxes. Based on optical mode degeneracy, they break time-reversal symmetry in different manners—via temporal modulation and the Faraday effect—to synthesize tunable non-Abelian gauge fields. The Sagnac interference of two final states, obtained by reversely-ordered path integrals, demonstrates the non-commutativity of the gauge fields. These results introduce real-space building blocks for non-Abelian gauge fields, relevant for classical and quantum exotic topological phenomena.

[1]Yi Yang, Aviram Massuda, Charles Roques-Carmes, Steven E. Kooi, Thomas Christensen, Steven G. Johnson, John D. Joannopoulos, Owen D. Miller, Ido Kaminer & Marin Solja?i?, Maximal spontaneous photon emission and energy loss from free electrons, Nature Physics,14, 894 (2018)

[2]Yi Yang, Di Zhu, Wei Yan, Akshay Agarwal, Mengjie Zheng, John D. Joannopoulos, Philippe Lalanne, Thomas Christensen, Karl K. Berggren, Marin Solja?i?, A General Theoretical and Experimental Framework for Nanoscale Electromagnetism, arXiv: 1901.03988 (2019)

[3]Yi Yang, Chao Peng, Di Zhu, Hrvoje Buljan, John D. Joannopoulos, Bo Zhen, and Marin Solja?i?, Synthesis and Observation of Non-Abelian Gauge Fields in Real Space, arXiv: 1906.03369 (2019)

上一條:知識產權價值評估與金融創新
下一條:機械院:Composites under Harsh Environments: Civil Engineering andAerospace Engineering perspectives

湖大官網
湖大微信
湖大微博
云南快乐10分助手下载